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J. Phys. A: Gen. Phys., Vol. 5, March 1972. Printed in Great Britain 

Motion of an impurity atom in a lattice of harmonically 
coupled atoms and the stationary generalized Langevin equation 

Y FUKUI and T MORITAT 
Department of Applied Science, Faculty of Engineering, Tohoku University, Sendai, Japan 

MS received 25 March 1971, in revised form 22 September 1971 

Abstract. The motion of an impurity atom imbedded in a harmonic lattice is investigated. 
It is a simple and exactly soluble example of a many-particle system in which diffusive motion 
may occur for the impurity atom. By the direct calculation of the Laplace transforms of the 
velocity autocorrelation function and the friction function r(t), it is concluded that the fast 
decay of the friction function is necessary in order for diffusive motion to occur, and that 
this is the case when the stationary generalized Langevin equation describes the motion of 
the impurity atom. 

1. Introduction 

Mori (1965) investigated the Liouville equations of motion for a number of dynamical 
variables X, ( t ) ,  X , ( t ) ,  . . . , X,(t), and showed that those equations can be expressed as the 
following generalized Langevin equation : 

He derived the second fluctuation-dissipation theorem for this equation 
n 

r j k ( t  - ‘%xk(o), x:(o)) = (Rr(t), R?*(t’)) (1.2) 
k =  1 

where the bracket (A, B) of A and B denotes the canonical average of a suitably defined 
product of A and B. 

Mori’s equation is applicable after an initial time to ,  and the random force Rr(t)  
depends on the arbitrarily chosen initial time t o .  Since the physical quantity ‘random 
force’ must be defined independently of such an arbitrary time, it is desirable to split the 
random force of this nature out of Rr(t). In fact such a formulation has already been 
considered by Kubo (1966), who suggested that the second fluctuation-dissipation 
theorem (1.2) can also be extended to that case. 

In a preceding paper (Fukui and Morita 1971), the present authors considered the 
Liouville equations for a number of variables X,( t ) ,  X,(t), . . . , Xw(t), and derived the 
stationary generalized Langevin equation in the following form : 

t Now at Department of Physics, Ohio University, Athens, Ohio 45701, USA. 
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where the friction function r j k ( t  - t‘) is expressed in terms of the correlation ofthe random 
forces through the second fluctuation-dissipation theorem 

As pointed out in the preceding paper, the assumption of fast decay is necessary for the 
friction function r j k ( t )  to derive the stationary generalized Langevin equation (1.3). 

Rubin (1960,1961) and others (eg Takeno and Hori 1962, Mazur 1965 and Nakazawa 
1966) investigated harmonic lattices including an impurity atom as a model for brownian 
motion. If the model is appropriate, the position x,(t) of the impurity atom follows the 
Langevin equation 

and the friction constant y and the ‘random force’fit) occurring in this equation will 
satisfy the fluctuation-dissipation theorem 

where i,(t) is the time derivative of x,(t), f,(t) and fs(t) are the a and /3 components of 
f ( t )  and 6, is the Kronecker delta. Most work in the past has been concentrated on 
finding out the limiting cases when the Langevin equation (1.5) with (1.6) can be used to 
describe the motion of the impurity atom. For instance, the impurity atom in the one 
dimensional lattice can be considered to follow the Langevin equation in the limit of 
infinite mass of the impurity atom, infinite coupling constant and infinitesimal lattice 
constant (Takeno and Hori 1962) or in the limit of infinite mass of the impurity atom and 
infinite time (eg Mazur 1965 and Nakazawa 1966). 

In the present paper we investigate in what situations the impurity atom follows 
the stationary generalized Langevin equation. Two cases are compared according to 
whether the atoms are coupled to their respective equilibrium positions or not. It is 
concluded that the stationary generalized Langevin equation is applicable only if these 
couplings do not exist. That equation is shown not to be applicable to the three 
dimensional case in any limit. 

In $ 2 ,  the conditions to be satisfied for the friction function are discussed in the 
stationary generalized Langevin equation. Whether those conditions are satisfied 
or not is discussed in §§ 4 and 5 for the one, two and three dimensional infinite lattices. 
Solution of the problem for the one dimensional finite lattice is given and discussed in 5 3. 

2. The stationary generalized Langevin equation for the impurity atom 

The stationary generalized Langevin equation (1.3) with (1.4) reads, for the impurity 
atom, as follows : 

d 
-A,(t) + 1; dt’r(t - t’)i,(t’) = R(t) 
dt cc 

(2.1) 
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In the present paper, we investigate in which situations the impurity atom follows this 
equation (2.1) with conditions (2.2). 

In order to show the applicability of (2.1) with (2.2), we recall that the condition that 
r(t) decays fast to zero was used in deriving that equation (Fukui and Morita 1971). 
The condition that r(t) decays to zero is written as 

lim r(t) = 0. 
t-m 

If we denote the Laplace transform of r(t) by 

Tz = Jom dtr(t)  exp( -zt) 

we have 

lim zr ,  = 0 
Z - r O f  

from (2.3). It should be noted that (2.5) is necessary but not sufficient for (2.3). The 
rapidity of the decay of r(t) required in deriving (2.1) depends on the property of i o ( t ) .  
It is natural to assume that i o ( t )  is finite. Then it is sufficient to require that 

From these considerations, we observe that : (i) if (2.3) and (2.6) are satisfied, we can 
derive (2.1), and (ii) if (2.5) is not satisfied, we cannot derive (2.1). We shall check (ii) 
first, and when (2.5) is satisfied, (i) is also checked. By this procedure we investigate the 
applicability of (2.1) for the exactly soluble harmonically coupled atoms with one 
impurity atom. 

Here we shall consider the velocity autocorrelation function of the impurity atom, 
(io(t), io(0)). We denote its Laplace transform by (io, a,),. According to the theory 
of the generalized Langevin equation developed by Mori (1965), Kubo (1966) and 
Fukui and Morita (1970), this Laplace transform (i,,io), must be connected with 
Tz through the relation 

where M is the mass of the impurity atom, kB is the Boltzmann constant and T is the 
temperature of the system. Under a general assumption on the analytic properties of 
the function (k0, io),, one sees that this quantity reduces to the diffusion constant D 
in the limit of z -+ 0 (eg Nakajima 1958 and Nakazawa 1966). As a result, one has 

k€l T D = lim-. 
2-0  M T ,  

If (2.6) is satisfied, D is not zero and hence 

D > 0. (2.9) 

This condition will be investigated in the following sections. 
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3. The velocity autocorrelation function 

We consider a one dimensional harmonic lattice including an impurity atom. The 
Hamiltonian of our system is given by 

where x j  and p j  are the displacement and the canonical conjugate momentum of the 
j th atom, respectively. The impurity atom is labelled b y j  = 0. We require the periodic 
boundary condition and assume that x N +  = x, and x -  5 x N .  We denote the masses 
of the impurity and the host atoms by M and m :  m ,  = M ,  m ,  = m2 = . . . = nzH = m, 
and the coupling constants of the impurity and the host atoms to their respective equi- 
librium positions by K’ and k ’ :  kb = K‘, k‘, = k; = . . . = k;Y = k’. The parameters K ’  
and k‘ are real and non-negative. The coupling constant k between the neighbouring 
atoms is a positive constant. The equation of motion for thejth atom is written as 

mjx,(t) = kxj  + ( t )  - (2k + k;)xj(t) + k x j -  l(t) (3.2) 

where x-  l(t) appearing in the equation for j = 0 represents x N ( t )  as noticed above. 

atom, the product of equation (3.2) with i , (O)  is averaged in the canonical ensemble: 
Since we are interested in the velocity autocorrelation function for the impurity 

Here and in the following, the correlation function ( A ,  B )  represents the canonical 
average of the product AB. By taking the Laplace transform, one obtains the following 
set of linear equations : 

1 k k 
m j z ( i j ,  i , ) , + ( 2 k + k ) ) ; ( i j ,  io),--(ij+ 1 ,  x o ) z - - ( i j . -  1 ,  io>z z Z 

= kBTdjO j = O , 1 , 2  , . . . ,  N .  (3.4) 

In the matrix form, this set of equations is written as 

where MN(z ; M ,  K’) is the following matrix of order N + 1 : 
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D, = 

k 
m ... 0 0 

k 
m m m 

0 
k 
m 

-- 2k + k’ 
Z2 +- . . .  

MN(z ; .M,  K ‘ )  = 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2k + k’ . . .  -- 

m m 

(3.6) 

0 

One can easily show that the Laplace transform of the velocity autocorrelation function 
(io, io), is solved in the following form: 

M 2 k + K ’ )  D N - ~  ( k ) 2  - DN-1-2  ( k ) N + l } - l  - ( i o ,  i o ) ,  = 7 D N  -z2 +- 
2kBT { ( m  m m m 

(3.7) 

where D, is the determinant of order n defined by 

... 0 0 0 1  

k -- k 2k + k’ I -m Z 2 + 7  m 0 0 1  

0 z2+- . . .  2k+k’  k 
m m 

-- 

O i  I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

k 
m m 

k 
m m 

-- 2k+k’  . . .  z2+- 0 0 0 

2k+k’ 
Z2 +- ... -- 0 0 0 

We shall introduce the resolvent matrix RN(z) for the uniform system by 

where 1 on the right hand side is the unit matrix. Since MN(z; m, k’) is a cyclic matrix, 
so is RN(z). We denote the (i,j) element of RN(z) as R,(z, i -  j ) .  The (0,O) element is 
readily obtained by comparing equations (3.5) and (3.9). In place of (3.7), one has 

R N ( Z , O )  = , , i ( . ’ + ~ ) D ~ - 2 ( ~ ) ’ D ~ - 1 - 2 ( ~ )  2k + k’ N + l  } - 1  . (3.10) 
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In terms of this element of the resolvent, (3.7) is expressed as follows : 

(3.1 1) 

Comparison of (3.7) and (3.11) with equation (2.7) leads to the result that r, must be 
given by 

m K ' - k ' l  m 
M M z MzR,(z,O)' 

r, = ---z+--+ (3.12) 

The elements of the resolvent RN(z) of the cyclic matrix MN(z; m, k') are well known to 
have the form : 

(3.13) 

We check the condition (2.5) for (3.12), and then we find that 

(3.14) 

Thus if k' > 0 or K' > 0, (2.5) is not satisfied and hence (2.1) is not derived for the one 
dimensional lattice of finite length. For this case, r, -+ x as z -+ 0 and hence D given 
by (2.8) is zero. This shows that if the impurity atom or the other particles are coupled 
to fixed points, the impurity atom cannot diffuse. 

If k' = K' = 0, rz - Nmz/M -+ 0 ( z  -+ 0) and hence D = a. This behaviour is a 
consequence of the zero frequency mode which occurs when the periodic boundary 
condition is adopted. That mode represents the free rotation of the ring of coupled 
atoms. When one adopted the fixed boundary condition and assumed 

X N , ' ( t )  = X - N , 2 0 )  = 0 

one would have no zero frequency mode and lim,+ + z r ,  > 0 and D = 0. 

4. Limit as N - r  00 

In the limit when N -+ CO, the resolvent tends to the value at the origin of the lattice 
Green function G,(w ; 0) as follows : 

lim R,(z, 0) = G I  
; 0)  N+r 

where 

m 

(4.2) 

Substituting (4.1) with (4.2) into (3.1 1) and (3.12), one derives the following limiting 
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forms for the Laplace transforms of the velocity autocorrelation function and the 
friction function : 

zk,T M K ’  - k’ { ( 2k; k’) 222r/2] - ’ 
(i,,i,), = --[(;-1)z2+-- + z2+- -- 

r, = - 

We check (2.5) for the present case: 

if k‘ > 0 or K‘ > 0 

if k‘ = K ’  = 0. 
lim zT,  

Z - r O +  
(4.5) 

This shows that if k‘ > 0 or K’ > 0, (2.1) is not derived. If k‘ = K’ = 0, we have to 
check (2.3) and (2.6). From (4.4) we see that (2.6) is satisfied and hence the Laplace 
inverse transform r(t) of (4.4) must decay to zero as t 4 CO. In fact, it is given by 

Thus we confirm that (2.1) is derived for this system as N + CO. 

If k‘ > 0 or K ‘  > 0, D given by (2.8) is zero. This result corresponds to the physical 
situation that the diffusive motion cannot occur when the particles are bound to some 
fixed point. 

If k’ = K‘ = 0, at z = 0 is finite and the diffusion constant D is given by 

(4.7) 

It should be noted that the free rotational mode which results in D = CO for the finite 
system is not serious for the infinite system and we obtain a finite value of D. The 
Laplace inverse transform of (4.3) for this case was given by Rubin (1961) and Nakazawa 
(1966) for the cases of M / m  = 1 and 2 in a closed form. These authors gave the following 
asymptotic behaviour for the general case : 

1 

0 0  

where r = m/M,  U = mor/(l -2r)’i2 and uo = 2(k/m)’l2 

5. Two and three dimensional lattices 

The problems of the two and three dimensional lattice with one impurity atom are also 
solved without difficulty (see eg Rubin 1960, 1961). The result for I‘, is 

K’-k’  +- m ( Gd ( z 2 + -  2 d y k ’ ; 0 ) - 1 - z 2 )  rz = - 
zM zM 
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where G2(w ; 0) and G,(w ; 0) are the values at the origin of the lattice Green functions 
for the square and cubic lattices: 

(5 .2 )  

2k 

2k 
G,(u; 0) - J n  dxJn  d g I n  dz(w--(cosx+cosy+cosz) m 

(2nl3 - n  - n  - x  

( 5 . 3 )  w - (2k cos x/m) 

- 1  2k 

where K ( k )  is the complete elliptic integral of the first kind: 

dB 
(1 - k2  sin28)1'2 ' 

K ( k )  = 

From the behaviour of Gd(w; 0) at w N 2dk/m, we know that 

finite constant 

d = l  

d = 2  (5.4) 

d = 3.  

In all the cases, if k' > 0 or K' > 0 

lim zr ,  > 0 
2-07 

and 

D = 0. 

If k' = K'  = 0 

io finite constant 
lim zr, = 

n - t O +  

and 

D = O  for d = 2 or d = 3 .  

For k' = K' = 0, d = 2 ,  r(t) is given by 

d = 2  

d = 3  

Equation (5.5) shows that condition (2.5) is not satisfied if k' > 0 or K'  > 0 both 
for the two and the three dimensional lattices. Equation (5.7) shows that the condition 
(2 .6 )  is not satisfied even when k' = K' = 0 for the three dimensional lattice. For the two 
dimensional lattice, if k' = K' = 0, (5.4) shows that rz diverges as z -, 0 and condition 
(2 .6 )  is not satisfied; this is a consequence of the very slow decay of r(t) as given by 
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(5.9). Because of this behaviour of r(t), we cannot conclude that the integral on the 
right hand side of (2.1) is meaningful, and hence the stationary generalized Langevin 
equation will not be applicable to this case. 

6. Conclusions 

A harmonic lattice including an impurity atom is considered and the behaviour of the 
impurity atom is investigated in the framework of the generalized Langevin equation. 
With the aid of the exact expressions for the Laplace transforms of the velocity auto- 
correlation function and the friction function for the impurity atom, we conclude that 
diffusive motion can occur only for the impurity atom in the one dimensional lattice 
when atoms are not bound to fixed points. For this case, the friction function r(t) 
decays rapidly to zero in the limit o f t  -, 00, and the stationary generalized Langevin 
equation is seen to be applicable. In the two dimensional lattice, if the atoms are not 
bound to fixed points, r(t) decays to zero but the decay is so slow that the stationary 
generalized Langevin equation is considered not to be applicable ; the diffusion constant 
D for the impurity atom is zero for this system. In the three dimensional case, r(t) 
does not decay and D = 0, and the stationary generalized Langevin equation cannot be 
applicable. The simple model gives an example for which the fast decay of the friction 
function r(t) is physically significant in describing the diffusive motion of a variable. 
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